Comparative interactomics provides evidence for functional specialization of the nuclear pore complex.

نویسندگان

  • Samson O Obado
  • Mark C Field
  • Michael P Rout
چکیده

The core architecture of the eukaryotic cell was established well over one billion years ago, and is largely retained in all extant lineages. However, eukaryotic cells also possess lineage-specific features, frequently keyed to specific functional requirements. One quintessential core eukaryotic structure is the nuclear pore complex (NPC), responsible for regulating exchange of macromolecules between the nucleus and cytoplasm as well as acting as a nuclear organizational hub. NPC architecture has been best documented in one eukaryotic supergroup, the Opisthokonts (e.g. Saccharomyces cerevisiae and Homo sapiens), which although compositionally similar, have significant variations in certain NPC subcomplex structures. The variation of NPC structure across other taxa in the eukaryotic kingdom however, remains poorly understood. We explored trypanosomes, highly divergent organisms, and mapped and assigned their NPC proteins to specific substructures to reveal their NPC architecture. We showed that the NPC central structural scaffold is conserved, likely across all eukaryotes, but more peripheral elements can exhibit very significant lineage-specific losses, duplications or other alterations in their components. Amazingly, trypanosomes lack the major components of the mRNA export platform that are asymmetrically localized within yeast and vertebrate NPCs. Concomitant with this, the trypanosome NPC is ALMOST completely symmetric with the nuclear basket being the only major source of asymmetry. We suggest these features point toward a stepwise evolution of the NPC in which a coating scaffold first stabilized the pore after which selective gating emerged and expanded, leading to the addition of peripheral remodeling machineries on the nucleoplasmic and cytoplasmic sides of the pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation and Distribution of Nuclear Pore Complexes in Interphase

The possibility of nuclear pore formation in the interphase nucleus was investigated in control and phytohemagglutinin (PHA) stimulated lymphocytes by the freeze-etching technique. 48 hr after the addition of PHA, the newly formed blasts which had not as yet divided had at least twice the number of pores per nucleus as controls. This clearly demonstrates that in lymphocytes nuclear pore formati...

متن کامل

Origin and Evolution of Dishevelled

Dishevelled (Dsh or Dvl) is an important signaling protein, playing a key role in Wnt signaling and relaying cellular information for several developmental pathways. Dsh is highly conserved among metazoans and has expanded into a multigene family in most bilaterian lineages, including vertebrates, planarians, and nematodes. These orthologs, where explored, are known to have considerable overlap...

متن کامل

Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signaling

Nuclear translocation of immune regulatory proteins and signal transducers is an essential process in animal and plant defense signaling against pathogenic microbes. Import of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors termed importins, typically dimers of a cargo-binding α-subunit and a β-subunit that mediates translocati...

متن کامل

The Trypanosome Nuclear Pore Reveals 1.5 Billion Years of Similarities and Differences.

The nuclear pore complex (NPC) is perhaps the most magnificent protein complex in the eukaryotic cell. It is built from almost 500 individual protein molecules of about 30 different types, arranged in 8-fold symmetry to create a central pore through which proteins, RNAs, and all other molecules must pass in order to enter or exit the nucleus. The nucleus and the nuclear membrane may define what...

متن کامل

Comparative interactomics with Funcoup 2.0

FunCoup (http://FunCoup.sbc.su.se) is a database that maintains and visualizes global gene/protein networks of functional coupling that have been constructed by Bayesian integration of diverse high-throughput data. FunCoup achieves high coverage by orthology-based integration of data sources from different model organisms and from different platforms. We here present release 2.0 in which the da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleus

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2017